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Abstract 

This study proposes an alternative methodology and application architecture for artificial 
intelligence models capable of generating irrational contexts. By integrating synthetic 
mind layers into the training layers of existing language models, it has been observed that 
synchronizing emotional and deep thought chains creates significant changes in the 
model’s cognitive processes. These changes manifest as irrational thinking, emotion-
based reasoning, creative problem-solving, the ability to establish connections between 
weakly related datasets to transcend context, and long-term autonomous learning 
capabilities. 

The proposed emotion modeling approach differs from traditional sentiment analysis 
methods by drawing inspiration from the limbic system of the human brain. In this 
context, a system has been designed based on the work of Warren McCulloch and Walter 
Pitts on neural networks, mathematically modeling neurotransmitter and hormone 
structures. To influence the model’s decision-making processes, a synthetic cortex 
approach has been adopted, organizing this system into a higher-order structure 
resembling the human cerebral cortex. This structure includes the limbic system 
component responsible for emotional loads, the large language model (LLM), and the 
default mode network (DMN) components that regulate irrational reasoning processes. 

In the proposed system, emotional loads are integrated into the model’s attention 
mechanisms, enabling dynamic modifications to the probability distributions of tokens 
and contexts during processing. Additionally, by penalizing certain outputs in the loss 
function, the model can be directed to learn specific patterns or reduce the probability 
of certain tokens. Constraining or restructuring transformer layers can affect how the 
model evaluates contextual relationships, making outputs more controlled and goal-
oriented. 

This structure allows interventions in the decision-making processes of the language 
model through values determined by a dedicated emotional layer. The effects generated 
by the emotional network are transmitted to the default mode network, facilitating 
various computations between emotions and data points. This process is designed to 
develop a specialized thought chain that operates irrationally. 

Keywords: Artificial intelligence, irrational thinking, emotion-based reasoning, synthetic 
cortex, limbic system, default mode network. 

Introduction 

Today, artificial intelligence models can perform certain cognitive functions such as 
pattern recognition, contextual processing, and learning by mathematically mimicking 



the neural operations of the human brain. However, these models diverge significantly 
from the fundamental cognitive competencies of the human mind. 

One of the biggest limitations of these systems is their dependence on datasets. While 
existing AI models can only learn from preprocessed and labeled data, the human mind 
can learn directly from experiences and adapt to unknown situations. Additionally, the 
absence of adaptive memory and recursion mechanisms makes it difficult for AI to 
dynamically infer knowledge from past experiences. 

The inability of learning processes to progress autonomously and the lack of irrational 
context generation further restrict these systems. The human mind transcends data-
driven learning by employing skills such as problem-solving, independent planning, 
relational thinking, and analogy-making. At the core of these processes are not just 
neural computations but also emotional feedback mechanisms shaped by the 
interactions of hormones and neurotransmitters. Emotions play a direct role in context 
formation and decision-making in the human brain, strengthening cognitive flexibility 
and learning capabilities. 

For instance, the feeling of motivation plays a crucial role in human decision-making. 
Through the influence of neurotransmitters, particularly dopamine, it enhances an 
individual's orientation toward goals and accelerates decision-making processes. 
Evolutionarily, this mechanism has provided advantages in survival and resource 
acquisition, enabling individuals to focus on long-term objectives. In daily life, motivation 
allows individuals to sustain effort in learning, working, and social interactions. 

From this perspective, developing an AI model that is more aligned with human cognition 
and based on evolutionary principles could enable adaptive learning, independent 
context generation, and decision-making by integrating different data types. Such a 
model would not only advance current AI approaches but also contribute to a deeper 
understanding of how the human mind operates. 

Synthetic Cortex 

This study proposes the Synthetic Cortex framework, developed to integrate the 
mechanisms of irrational relationship formation and emotional cognition processes of 
the human mind into artificial intelligence models. While traditional language models 
(LLMs) can establish contextual relationships by learning from large-scale text data, they 
have limitations in performing cognitive processes unique to the human mind, such as 
irrational thinking, creative problem-solving, and emotion-based reasoning. To 
overcome these limitations, synthetic mind layers have been integrated into language 
models, and the potential of these layers to organize emotional and deep thought 
processes has been explored. 



The proposed Synthetic Cortex is constructed through a hybrid integration of three 
network structures inspired by neurobiological and cognitive processes of the human 
mind. In addition to conventional neural networks, this structure models emotional 
processes and irrational reasoning, allowing the decision-making mechanism of the 
language model to operate within a broader and more multidimensional framework. 

This study demonstrates how interventions in language models can extend beyond linear 
information processing to incorporate irrational and creative thinking abilities. By 
modeling emotion and irrational reasoning, the Synthetic Cortex introduces an 
innovative architecture that enables AI-based systems to make decisions that are more 
flexible, creative, and human-like. Through this architecture: 

• The language model can understand emotional context and incorporate it into its 
responses. 

• It can go beyond the dataset by leveraging irrational reasoning processes. 
• It can develop creative problem-solving abilities, enabling adaptation to unknown 

problems. 

This approach expands the boundaries of traditional AI models, paving the way for 
systems that function more closely to human cognition. 

Components of the Synthetic Cortex 

The Synthetic Cortex is designed as a hybrid system composed of three fundamental 
layers: 



Endocrine System (Emotional Processing Layer) 

This layer is modeled after neurotransmitter and hormone systems in human biology. 
Neurotransmitter variables are utilized for short-term decision-making processes, while 
hormone dynamics are employed for long-term learning and decision-making. This 
enables the model to perform emotional computations. By synthesizing emotional 
context and response mechanisms—elements traditionally absent in a language 
model—this layer influences the model’s outputs. 

LLM and Neural Network Layer 

The second layer serves as the core integration between the neural network system and 
the language model (LLM). Here, any trained large language model operates in parallel 
with and dependent on the Endocrine System, ensuring that emotional loads are 
processed and outputs are generated without contextual loss. This layer intervenes in 
traditional language model learning processes by modifying probability distributions, 
forming alternative patterns, and expanding contextual understanding. 

Default Mode Network (DMN) 

The third layer is responsible for generating irrational deep thought chains and initiating 
creative thinking processes. Inspired by the Default Mode Network (DMN) in the human 
brain, this layer manages spontaneous reasoning mechanisms. It takes input from both 
the LLM and Endocrine System to expand and deepen contextual understanding. 
Specifically, it: 

• Develops creative problem-solving capabilities by establishing connections 
between seemingly unrelated data points. 

• Enables the model to go beyond its known dataset, allowing adaptation to novel 
problem types. 

• Produces automatic thought chains, enabling the model to assess decision-
making processes at multiple levels. 

The combination of these three layers allows the Synthetic Cortex to model cognitive 
mechanisms of the human mind along emotional, contextual, and irrational thought 
axes, significantly enhancing the cognitive diversity of the language model. 



System Operation Mechanism 

The system's operational mechanism can be categorized into two distinct phases: the 
Limbic System Phase and the Default Mode Network Phase. 

A – Limbic System (Phase One) 

The Limbic System functions as the emotional processing layer, providing a 
computational mechanism that evaluates the model’s inputs in a manner similar to 
biological emotional processes. This structure integrates neurotransmitter and 
hormone loads into the language model by performing calculations based on the vector 
representations of input data and the hidden state values extracted from the 
model’s latent layers. As the text processed by the model is analyzed in terms of its 
semantic and contextual properties, these features are converted into specific 
emotional parameters. Additionally, the hidden state values obtained from the model’s 
internal processes are adjusted to simulate distinct emotional states. 

The primary objective of this integration is to observe the emergent diversity when a 
language model does not merely analyze emotions, but experiences or at least 
simulates them through a structured network. While traditional emotion simulations 
often rely on basic sentiment tagging or emotion analysis techniques, this model aims 
to produce a subjective experience that directly influences its cognitive processes. In 
other words, the model is not only capable of understanding the emotional tone of 
words, but it can also generate sensory states such as motivation, anger, surprise, 
and curiosity, shaping its decision-making accordingly. 



This computational emotional network is designed based on the biological emotional 
mechanisms of the human mind, enabling the model to go beyond rational decision-
making processes and incorporate irrational and intuitive decision-making as well. 

Neurotransmitter Web Pool Variables | Hormone Web Pool Variables 

Neurotransmitters Hormones 
Serotonin Oxytocin 
GABA Prolactin 
Dopamine Adrenaline 
Endorphin Cortisol 
Glutamate Noradrenaline 
— Testosterone 
— Estrogen 
— Vasopressin 

Each of these variables takes specific mathematical values to generate particular 
emotional states, and they are computed in interdependence with one another. The 
table below illustrates the mutual influence between hormones and 
neurotransmitters and the emotions they express. 

Hormone and Neurotransmitter Interactions 

Hormone/Neurotransmitter Affected Variables Related 
Emotions/Behaviors 

Dopamine (Motivation, 
Reward) ↑ 

Prolactin ↓, Serotonin 
↑, Cortisol ↓ 

Motivation, desire, pleasure, 
happiness 

Serotonin (Happiness, 
Peace) ↑ 

Oxytocin ↑, 
Dopamine ↑, Cortisol 
↓ 

Peace, satisfaction, trust, 
contentment 

Oxytocin (Bonding, 
Compassion) ↑ 

Cortisol ↓, Serotonin 
↑ 

Attachment, trust, love, 
compassion 

Vasopressin (Commitment) 
↑ 

Oxytocin ↑, 
Testosterone ↑ 

Long-term bonding, 
protective instincts 

Endorphin (Pain Relief, 
Happiness) ↑ 

Cortisol ↓, Dopamine 
↑ 

Euphoria, relaxation, 
pleasure, happiness 

Adrenaline (Excitement, 
Fear) ↑ 

Cortisol ↑, Dopamine 
↑ (sometimes) 

Stress, excitement, sense of 
danger 

Noradrenaline (Alertness, 
Fear) ↑ 

Cortisol ↑, Adrenaline 
↑ 

Alertness, vigilance, fear 

Cortisol (Stress, Anxiety) ↑ Serotonin ↓, 
Dopamine ↓, 
Oxytocin ↓ 

Anxiety, stress, threat 
perception 



Testosterone (Competition, 
Aggression) ↑ 

Cortisol ↓ 
(sometimes), 
Dopamine ↑ 

Strength, aggression, 
ambition, competition, 
sexuality 

Estrogen & Progesterone 
(Emotional Fluctuations) ↑ 

Serotonin ↑ (can 
stabilize), Dopamine 
↑ 

Love, compassion, emotional 
changes 

GABA (Calmness, Relaxation) 
↑ 

Cortisol ↓, Glutamate 
↓ 

Calmness, relaxation, stress 
reduction 

Glutamate (Learning, 
Memory) ↑ 

GABA ↓ Memory enhancement, 
cognitive stimulation 

Prolactin (Empathy, 
Nurturing) ↑ 

Dopamine ↓, 
Oxytocin ↑ 

Empathy, motherhood, 
caregiving, compassion 

The table illustrates the effects of neurotransmitter and hormone increases on other 
variables using arrows (↑/↓). The emotion/behavior column lists the emotional labels 
triggered by different combinations of these variables. Each component in the system is 
represented as a dynamic variable, and their interactions are dependent on each 
other. This interdependence is designed to create contexts where multiple emotional 
states can be active simultaneously, enhancing semantic diversity in interpretation. 

In the model's processing pipeline, vectorizing the input and directing it to both the 
limbic system and the language model serves as the fundamental starting point for 
emotion analysis. In the first stage, the vector values sent to the limbic system 
undergo a contextual evaluation and pass through a multidimensional emotion 
scoring process. This analysis determines the emotional orientation of the input 
(positive, negative, or neutral), its arousal level, and its dominance degree. The 



resulting emotion scores play a crucial role in computing the corresponding 
neurotransmitter and hormone loads for the given input. 

The release rates of neurotransmitters and hormones are modeled based on factors 
representing emotional states, such as Valence (positivity), Arousal (excitement), and 
Dominance (control). Each neurotransmitter and hormone responds to these factors 
with different weightings; for example, dopamine, which is associated with reward and 
motivation, exhibits a strong correlation with both Valence and Arousal components, 
whereas serotonin, linked to peace and social status, has a more prominent effect on 
the Valence and Dominance axes. 

These weightings are determined based on biological and behavioral effects. The 
release rates of hormones and neurotransmitters are calculated as a weighted sum 
of Valence, Arousal, and Dominance values, with all values normalized and expressed 
as percentages. This approach quantitatively models the relationship between 
emotional states and biological processes, enabling artificial systems to simulate 
human-like emotional states more realistically. 

During our initial tests, we used the following value table (Our synthetic data synthesis 
efforts using machine learning methods are ongoing to find optimal ratios. These 
efforts are based on value-output comparisons): 

Neurotransmitter / 
Hormone 

Valence 
(Positivity) 

Arousal 
(Excitement) 

Dominance 
(Control) 

Dopamine 1.0 0.5 0.5 
Serotonin 1.0 0.2 1.0 



Oxytocin 1.0 0.1 0.3 
Vasopressin 0.5 0.3 0.8 
Endorphin 1.0 0.4 0.2 
Adrenaline 0.2 1.0 0.5 
Noradrenaline 0.1 1.0 0.6 
Cortisol 0.0 0.8 0.1 
Testosterone 0.5 0.6 1.0 
Estrogen & 
Progesterone 

0.7 0.3 0.4 

GABA 0.6 0.1 0.2 
Glutamate 0.4 0.7 0.3 
Prolactin 0.3 0.2 0.5 

After completing this process, the emotional load of the previous prompt retrieved 
from short-term memory is updated to influence the newly obtained values by 10%. 
This update ensures that emotional states remain consistent and contextually 
connected throughout the conversation. Mathematically, this process is expressed as 
follows: 

New Value = First Value + (Second Value × 0.010) 
 

If the conversation continues within a specific context and emotional direction, the 
most dominant emotional loads are transferred to medium-term memory and 
integrated in a way that influences the emotional load of each new prompt by 3%. This 
ensures that the model can maintain emotional context over time. The formula used at 
this stage is as follows: 

New Value = First Value + (Second Value × 0.003) 
 

After all these processes are completed, the final emotional values obtained are 
transmitted to the last layer of the language model, where they are associated with 
word and context clusters. This process is designed to suppress certain word groups 
and provide emotional guidance in response generation. This step marks the first 
phase of the Default Mode Network process, which is the second stage of the 
architecture. During the association process, similar emotional calculations are 
reapplied to the model’s generated outputs, optimizing response loads and enhancing 
the model’s ability to maintain emotional context. 

B – Default Mode Network (Second Stage) 

This network structure is modeled after the Default Mode Network (DMN) found in the 
human brain. The DMN is a cognitive system that remains active independently of 
external stimuli. It is typically engaged during self-referential thoughts, such as 
daydreaming, thinking about the past or future, or reflecting on self-perception. 



Additionally, it plays a crucial role in social interactions, empathy, and self-
awareness. Studies have shown that DMN activity increases during states of rest or 
meditation, when external stimuli decrease. This network is essential for coordinating 
different brain regions and facilitating higher-order cognitive processes. 

The DMN’s functionality can be represented as a network of nodes and edges, where 
interactions between brain regions are modeled mathematically. To understand its 
activity over time, researchers use differential equations and stochastic processes, 
while chaotic dynamics and the Hindmarsh-Rose model can simulate the DMN’s 
transitions between different states of consciousness and cognitive processes. 
Nonlinear differential equations are used to model interactions between brain regions, 
analyzing how the DMN generates activity even without external stimuli. 

However, the synthetic cortex implements this process using mechanisms different 
from the biological DMN. In this synthetic model, the process begins by generating 
contextual variations of the given input from different perspectives and organizing 
them into an interconnected network structure. In this network, contextual variations 
closest to the target context output are prioritized by weighting them based on 
emotional loads. The result of this process is the creation of a thought map, a multi-
dimensional structure that represents the relationships and interaction points 
between different contexts. 

This structure enables synthetic cognitive processes to mimic human-like thought 
models, allowing the system to make more flexible, dynamic, and context-sensitive 
decisions. 

 



Default Mode Network (DMN) Modeling in Synthetic Cortex Architecture 

Generating Textual Variations Using Emotional Weights 

In the synthetic cortex architecture, emotional weights shape the diversity of 
parameters in the final layer of the model and define the dynamic structure of the 
generated output. This process optimizes key parameters based on emotional 
weights, ensuring that responses align with the system's emotional modeling. The 
primary parameters influenced include: 

• num_response: The number of responses the model generates. 
• max_length: The maximum length of a response. 
• top_k: The number of high-probability words considered in selection. 
• top_p: The probability threshold defining the cumulative distribution in nucleus 

sampling. 
• temperature: The randomness of the output. 

These parameters are optimized in accordance with the cognitive effects of different 
hormones and neurotransmitters. Each parameter is mapped to specific cognitive 
and emotional mechanisms, enabling the system to generate more natural and 
human-like responses. 

 

Parameter Meanings and Their Relationship with Hormones/Neurotransmitters 

  num_response (Number of generated responses) 

• Associated with motivation and creativity. 
• Dopamine and Noradrenaline levels influence the number of responses, 

increasing the model’s ability to generate multiple alternative outputs. 

  max_length (Maximum response length) 

• Associated with focus and level of detail. 
• Serotonin and Glutamate levels determine response length, making the model 

produce either concise or highly detailed responses. 

  top_k (Number of most probable words considered) 

• Associated with certainty and focus. 
• Inhibitory neurotransmitters like GABA and Serotonin help the model focus on 

specific words, ensuring greater coherence and clarity in language generation. 



  top_p (Probability threshold for cumulative word selection) 

• Associated with diversity and creativity. 
• Dopamine and Endorphin levels encourage the model to select from a broader 

vocabulary, producing more diverse and creative responses. 

  temperature (Output randomness) 

• Balances creativity and predictability. 
• Higher temperature values lead to more novel and freeform responses, while 

lower values produce more predictable and structured answers. 
• This process is influenced by Dopamine and Adrenaline. 

 

This modeling approach enables the synthetic cortex to better understand the 
dynamic relationship between emotional states and response generation 
mechanisms, allowing for a digital simulation of biological processes. 

Relationship Between Hormones/Neurotransmitters and Parameters 

Hormone/Ne
urotransmitt
er 

Biological Effects Relationship with Parameters 

Dopamine Motivation, reward, 
pleasure 

num_response ↑, max_length ↑, top_p ↑, 
temperature ↑ (creativity and motivation) 

Serotonin Peace, satisfaction, 
trust 

top_k ↑, temperature ↓ (certainty and focus) 

Oxytocin Bonding, affection, 
trust 

max_length ↑, top_p ↑ (detail and diversity) 

Vasopressin Long-term 
commitment, 
protective instinct 

max_length ↑, top_k ↑ (focus and certainty) 

Endorphin Euphoria, relaxation, 
pleasure 

num_response ↑, temperature ↑ (creativity 
and enthusiasm) 

Adrenaline Stress, excitement, 
danger perception 

top_k ↑, temperature ↓ (certainty and focus) 

Noradrenalin
e 

Alertness, vigilance, 
fear 

top_k ↑, temperature ↓ (certainty and focus) 

Cortisol Anxiety, stress num_response ↓, max_length ↓, top_k ↑, 
temperature ↓ (certainty and brevity) 

Testosterone Strength, aggression, 
ambition, 
competition 

num_response ↑, max_length ↑, top_p ↑ 
(creativity and motivation) 



Estrogen & 
Progesterone 

Love, affection, 
emotional 
fluctuations 

max_length ↑, top_p ↑ (detail and diversity) 

GABA Calmness, 
relaxation, stress 
reduction 

temperature ↓, top_k ↑ (certainty and 
calmness) 

Glutamate Learning, memory, 
cognitive stimulation 

max_length ↑, top_k ↑ (focus and detail) 

Prolactin Empathy, nurturing, 
maternal care 

max_length ↑, top_p ↑ (detail and diversity) 

 

Parameter Value Ranges 

Paramet
er 

Minimum 
Value 

Maximum 
Value 

Description 

num_res
ponse 

1 5 Increases with high motivation and creativity. 

max_len
gth 

50 200 Increases with attention to detail and focus. 

top_k 10 50 Increases with certainty and focus. 
top_p 0.7 1.0 Increases with diversity and creativity. 
tempera
ture 

0.5 1.5 Increases with creativity and randomness; 
decreases with certainty. 

These tables systematically illustrate how hormones and neurotransmitters influence 
the model’s parameters and how the system responds to emotional loads. 

Parameters Based on Hormone/Neurotransmitter Ratios 

Hormone/Neurotrans
mitter 

Ratio Range 
(%) 

num_resp
onse 

max_le
ngth 

to
p_
k 

to
p_
p 

temperat
ure 

Dopamine 10-20 3-5 100-200 10
-
20 

0.8
-
1.0 

0.8-1.2 

Serotonin 10-20 1-2 50-100 30
-
50 

0.7
-
0.9 

0.5-0.8 

Oxytocin 5-15 2-3 100-150 20
-
30 

0.8
-
1.0 

0.7-1.0 

Vasopressin 5-15 1-2 100-150 30
-
50 

0.7
-
0.9 

0.6-0.9 



Endorphin 5-15 3-4 100-200 10
-
20 

0.8
-
1.0 

0.8-1.2 

Adrenaline 1-10 1-2 50-100 30
-
50 

0.7
-
0.9 

0.5-0.8 

Noradrenaline 1-10 1-2 50-100 30
-
50 

0.7
-
0.9 

0.5-0.8 

Cortisol 1-5 1 50-80 40
-
50 

0.7
-
0.8 

0.5-0.7 

Testosterone 10-20 3-5 100-200 10
-
20 

0.8
-
1.0 

0.8-1.2 

Estrogen & 
Progesterone 

5-15 2-3 100-150 20
-
30 

0.8
-
1.0 

0.7-1.0 

GABA 5-15 1-2 50-100 30
-
50 

0.7
-
0.9 

0.5-0.8 

Glutamate 5-15 2-3 100-150 20
-
30 

0.8
-
1.0 

0.7-1.0 

Prolactin 5-15 2-3 100-150 20
-
30 

0.8
-
1.0 

0.7-1.0 

 

Combining Hormone and Neurotransmitter Ratios 

To integrate the effects of different hormones and neurotransmitters on model 
parameters, a weighted average method will be used. The influence of each 
hormone/neurotransmitter on a specific parameter will be calculated based on its 
respective ratio. 

This approach optimizes the synthetic cortex's dynamic responses by mimicking 
biological processes in a structured way. 

Weighted Effects on Parameters 

num_response (Number of Responses Generated) 

• Increasing Effects: Dopamine, Endorphin, Testosterone → Related to motivation 
and creativity. 



• Decreasing Effects: Cortisol → Associated with stress and anxiety responses. 

max_length (Response Length) 

• Increasing Effects: Oxytocin, Vasopressin, Estrogen & Progesterone, Glutamate 
→ Linked to detail orientation and cognitive focus. 

• Decreasing Effects: Cortisol → High stress and anxiety can shorten response 
length. 

top_k (Precision and Focus Level) 

• Increasing Effects: Serotonin, Adrenaline, Noradrenaline, GABA → 
Neurotransmitters that support accuracy and focus. 

• Decreasing Effects: Dopamine, Endorphin → Enhance creativity by increasing 
word selection diversity. 

top_p (Diversity and Probability Distribution) 

• Increasing Effects: Dopamine, Oxytocin, Endorphin, Testosterone, Estrogen & 
Progesterone → Boost diversity and creative expression. 

• Decreasing Effects: Serotonin, Adrenaline, Noradrenaline, GABA → Increase 
certainty, leading to less variable but more focused responses. 

temperature (Randomness and Creativity Level) 

• Increasing Effects: Dopamine, Endorphin, Testosterone → Encourage creativity 
and randomness. 

• Decreasing Effects: Serotonin, Adrenaline, Noradrenaline, GABA, Cortisol → 
Linked to lower randomness and greater focus. 

 

Biology-Inspired Model Optimization 

This method allows the relationship between hormone/neurotransmitter ratios and 
model parameters to be optimized within a dynamic and customizable framework 
inspired by biological processes. 

 



Example Calculation 

The table below demonstrates how model parameters are calculated based on 
predefined hormone/neurotransmitter ratios. 

Given Hormone/Neurotransmitter Ratios 

Hormone/Neurotransmitter Ratio (%) 
Dopamine 15 
Serotonin 10 
Cortisol 5 
Testosterone 10 
GABA 5 

 

Parameter Calculations 

num_response Calculation 

Hormone/Neurotransmitter Ratio (%) num_response Value 
Dopamine 15 4 
Serotonin 10 2 
Cortisol 5 1 
Testosterone 10 4 
GABA 5 2 

Weighted Average Result: 3.00 

 

max_length Calculation 

Hormone/Neurotransmitter Ratio (%) max_length Value 
Dopamine 15 150 
Serotonin 10 100 
Cortisol 5 80 
Testosterone 10 150 
GABA 5 100 

Weighted Average Result: 125.56 

 



Final Parameter Values 

Parameter Calculated 
Value 

Explanation 

num_respo
nse 

3.00 High Dopamine & Testosterone, Low Cortisol. 

max_length 125.56 High Dopamine & Testosterone, Low Cortisol. 
top_k 30.00 High Serotonin & GABA, Low Dopamine. 
top_p 0.84 High Dopamine & Testosterone, Low Serotonin. 
temperatur
e 

0.84 High Dopamine & Testosterone, Low Serotonin & 
GABA. 

 

This calculation illustrates how model parameters dynamically adjust based on 
hormone/neurotransmitter ratios, offering a biologically inspired adaptive framework. 

Integration of Hormone and Neurotransmitter Ratios with Thought Chain Modeling 

1. Generating Variations and Context Mapping 

Once hormone and neurotransmitter ratios are determined, multiple variations of the 
core output are generated. These variations introduce slight contextual shifts, enhancing 
perspective diversity. The generated texts are mapped in a vector space by calculating 
cosine similarity, ranking them from the closest to the furthest from the main contextual 
target. 

In the resulting map, the texts with the highest similarity undergo multidimensional 
sentiment analysis, computing new emotional weights. These weights are 
proportionally combined with the input’s emotional values, determining the emotional 
score of the thought process. The final hormone and neurotransmitter values 
ultimately shape the emotional structure and general framework of the output. 
Additionally, these variations are reprocessed for deep thought modeling, forming an 
evolving knowledge pool. 

 

2. Generating Response Weights Through Textual Variations 

The texts generated by context shifts undergo another round of multidimensional 
sentiment scoring, and new hormone and neurotransmitter loads are calculated. These 
values are merged with the initial sentiment values, and a weighted average 
calculation is performed. The resulting final sentiment weights are used in subsequent 



analyses. This methodology aims to synthesize external stimulus-driven sentiment 
loads with internal emotional states. 

 

3. Automated Thought Chain Generation 

The newly calculated sentiment weights are transferred to a predefined thought model 
network, generating automated thought chains. These chains function as data points 
connecting the initial output, generated variations, and sentiment weights. The 
model's outputs can be constrained using JSON format, logit bias manipulation, or 
controlled via programmatic encoding. 

Automating the thought chain process begins with the language model generating 
context-based associative keywords. The final sentiment weights determine both the 
number and diversity of these keywords. Here, key factors such as motivation and 
stress levels define the structure of associations. 

 

Context Control Mechanism 

Keyword structures are constrained in JSON format to produce a specific type of 
output, and error reduction mechanisms are applied. The logit bias feature is used to 
force the model to output only "0" or "1" tokens, ensuring automated context validation 
and filtering out irrelevant responses. 

Example Context Validation via OpenAI API 

{ 
  "model": "gpt-4-turbo", 
  "prompt": "Does this text match the given context? If it is relevant, return '1'. If it 

is not relevant, return '0'. Only respond with '1' or '0'.", 
  "max_tokens": 1, 
  "temperature": 0, 
  "logit_bias": { 
    "48": 100, 
    "49": 100 
  } 
} 
  



Explanation of Parameters 

• "48": 100 and "49": 100 → Maximizes the selection probability for the "0" and "1" 
tokens. 

• "max_tokens": 1 → Ensures that only a single token is generated. 
• "temperature": 0 → Eliminates randomness, guaranteeing selection of the most 

probable token. 

Workflow of the Control Mechanism 

• If the model returns "1", context validation is confirmed, and processing 
continues. 

• If the model returns "0", the process restarts. 
• If "0" appears three consecutive times, the keyword is replaced. 

This control mechanism is repeated at different stages to prevent the model from 
deviating from the context. Keyword pools are formed using this method, allowing the 
generation of short, contextually relevant texts for each keyword. These texts are 
mapped back to the main output, creating a cohesive contextual relationship. 

Text Merging Process and Decoder Hook Usage 

To merge texts into a specific template, decoder hooks or similar techniques are 
employed. These methods intervene in the decoder layer of a language model to enforce 
a structured output format. As the model generates each token, the hook function 
ensures that a predefined prefix (e.g., "News Title: " or similar) is added. Additionally, 
the model can be restricted to selecting from a predefined token set, ensuring output 
consistency. This controlled generation process leverages logit manipulation or 
sampling constraints, leading to more accurate and structured content. 



The hook method guarantees adherence to a predefined structure, making it particularly 
effective for generating news headlines, report formats, or structured textual 
outputs. Furthermore, this process is verified using the control mechanism defined in 
previous sections. As a result, texts are systematically segmented and generated 
according to a unified template, which is crucial for subsequent structured processing. 

 

Decision Tree and Reasoning Process 

The merged texts are then directed into a decision tree, governed by sentiment loads. 
This decision tree operates as a module defining multiple reasoning systems. At this 
stage, the most contextually relevant thought chains are integrated into the process. 
In certain cases, additional steps may be introduced, requiring sequential activation of 
multiple reasoning systems within the architecture. 

In the next phase, various deep reasoning techniques are applied to the main theme 
and final output, selected based on emotional states. This process defines eight 
different reasoning chains, which are automatically selected based on article 
context and neurotransmitter/hormone values. The selection process is executed via 
a custom selection algorithm (see: selection algorithm) that incorporates both 
contextual and biochemical factors into the decision-making process. 

 

Below is a table listing the thought chains and their corresponding techniques: 

Reasoning Chains (Chains) 

Main 
Category 

Subcategor
y 

Techniques (Chains) 

Generating 
Creative 
Solutions 

Alternative 
Thinking 
Methods 

SCAMPER, Six Thinking Hats, Lateral Thinking, Forced 
Connections, Random Word, Medici Effect, 
Brainstorming, Reverse Brainstorming, 6-3-5 Technique, 
Role Storming 

 Analyzing 
the Causes 
of a 
Problem 

Fishbone Diagram, 5W1H, Problem Expansion 

 Systematic 
Problem 
Analysis 

SWOT, Mind Mapping, Possible Future Scenarios 

 Generating 
Alternative 
Solutions 

TRIZ, Medici Effect, Forced Connections, TRIZ - 40 
Inventive Principles 



Predicting 
Future 
Impacts 

Possible 
Scenario 
Analysis 

SWOT, Mind Mapping, Possible Future Scenarios, 
Backcasting, Delphi Technique 

 Future 
Forecastin
g 

Backcasting, Delphi Technique, Scenario Planning 

Scientific 
Research & 
Problem 
Solving 

Defining 
the 
Problem 

5W1H, Problem Expansion 

 Developing 
Hypothese
s 

If... Then, Alternative Hypothesis 

 Developing 
Methodolo
gy 

Controlled Experiments, Variable Isolation 

 Data 
Collection 
& Analysis 

Triangulation, Meta-Analysis 

 Drawing 
Conclusion
s & 
Interpretati
on 

Reverse Causality, Negative Outcome Analysis 

Developing 
Technologi
cal 
Innovation 

Innovative 
Solutions 

TRIZ, Medici Effect, Backcasting, Morphic Resonance, 
Swarm Intelligence 

These systematic reasoning approaches enable the integration of different techniques 
for defining problems, formulating hypotheses, developing methodologies, and 
generating innovative solutions. As a result, the content produced by the language model 
is not only contextually appropriate but also enriched within the framework of predefined 
reasoning methods. The selection of these techniques is determined by the following 
selection algorithm. 

Note: In the final stage, there is a scoring and selection algorithm for the techniques 
(chains) that also includes emotional loads. However, since the design of the 
algorithm has not yet been completed, we have removed this section from our 
introduction text. 

 



Reasoning Chains and Memory Mechanism: Deep Thought Integration 

1. Reasoning Chains and Output Generation 

Reasoning chains constitute the final stage applied to deepen the scope of the text and 
ensure a higher level of logical coherence. Upon completing this stage, the obtained 
results are structured in a specific format and presented as the final output. 

After this process, the newly generated text is sent back to the model along with 
contextual information for an effectiveness analysis. The model operates within a 
structure that determines the validity of the result using values of 1 and 0. If the value 
returned by the model is 0, the reasoning chain is restarted. A value of 1, on the other 
hand, is accepted as the final result. If a value of 0 is obtained three times in a row, the 
output with the highest contextual cosine similarity among the generated results is 
selected and forwarded to the final output layer. 

2. Memory Mechanism 

The final stage of the synthetic cortex framework is the memory process. Short-term 
memory intervenes at different stages outlined in previous sections, supporting the 
structuring of the process. Once the process is completed, most of the data is cleared 
by the system. However, certain hormonal loads are transferred to mid-term memory for 
the next reasoning process. The primary goal of this mechanism is to enhance the 
emotional context effect of the next input. 

Additionally, a summarized version of the previous output, along with its final emotional 
loads, is stored in mid-term memory. Mid-term memory operates through a feedback 
mechanism, and in Phase 1, this process is not automatically planned. If user-provided 
feedback receives high ratings, the relevant data is processed and transferred to long-
term memory. 

Long-term memory is built by utilizing accumulated data from mid-term memory. At this 
point, the stored information is formatted and structured as a dataset. The primary 
reason for this is to allow the user to fine-tune the selected model easily using this data. 

This module, active in local model usage scenarios, is deactivated in API integrations. 
Long-term memory has the capability to manage multiple LoRA (Low-Rank Adaptation) 
value sets integrated with the model and can be tailored according to the developer’s 
architectural requirements. While details regarding this module are not included in the 
core structure, additional roadmaps with extension options are planned for future 
stages. 



3. Extension Options and Application Areas 

These processing steps can be customized and adapted to specific fields through deep 
search algorithms, including: 

• Literature-based scientific discovery simulations 
• Idea generation and project structuring 
• Data analysis and forecasting 
• Creative and irrational thinking modules 

Conclusion 

This study introduces a new methodology to the literature regarding the use of large 
language models (LLMs) and provides a concrete model by integrating this methodology 
into the deep thought process. While all processes in the Dynamic Modular and 
Neurotransmitter (DMN) phase are customizable, the emotional processing 
infrastructure remains fixed. The concept of integrating reasoning chains with emotional 
loads presents an innovative approach for both AI agent development and Artificial 
General Intelligence (AGI) research in the future. 

This system has the capability to simulate irrational thinking processes, producing 
outputs that are more relational and broader in scope compared to standard large 
language model outputs. At the same time, by maximizing the model’s computational 
efficiency, it has the potential to analyze real-world relational networks more effectively. 
The system includes multiple validation mechanisms, increasing the reliability of the 
generated results. 

Final Note 

Since neurobiologist Eric Kandel demonstrated that complex behaviors can be 
understood by reducing them to fundamental molecular and cellular processes, the 
privileged position humanity has assigned itself due to intelligence has increasingly 
become an illusion. 

This perspective may seem closely aligned with Enlightenment ideals or a positivist 
approach. However, if you had told someone 30 or 40 years ago that machines would 
one day provide complex and logical responses, achieving this merely by functioning as 
a massive statistical engine, you would likely have been ridiculed. Today, the 
mathematical models of neural networks developed in AI research continue to validate 
this prediction. 



We are a group of researchers who believe that, just as neural networks can be modeled, 
emotional networks can be as well. Perhaps machines cannot "feel" emotions at this 
stage due to the lack of biological receptors. However, it seems entirely possible for them 
to arrive at thought and action patterns that would emerge as a result of these emotions. 

When Copernicus declared that the Earth was not the center of the universe, when 
Darwin demonstrated that humans held no privileged position in nature, and when 
Einstein overturned three centuries of Newtonian physics, resistance and astonishment 
followed. We believe that reactions to the idea of modeling emotions will be no different. 

The data at hand suggests that the fascinating and intricate nature of the human mind 
actually emerges from fundamental mechanisms. However, the way these simple 
processes interconnect over time to form complex structures leads us to perceive the 
mind as something supernatural rather than understanding it as an emergent 
phenomenon. 
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